Graphene and 2D Materials
Graphene was the first 2D material to be isolated. Graphene and other two-dimensional materials have a long list of unique properties that have made it a hot topic for intense scientific research and the development of technological applications. These also have huge potential in their own right or in combination with Graphene. The extraordinary physical properties of Graphene and other 2D materials have the potential to both enhance existing technologies and also create a range of new applications. Pure Graphene has an exceptionally wide range of mechanical, thermal and electrical properties. Graphene can also greatly improve the thermal conductivity of a material improving heat dissipation. In applications which require very high electrical conductivity Graphene can either be used by itself or as an additive to other materials. Even in very low concentrations Graphene can greatly enhance the ability of electrical charge to flow in a material. Graphene’s ability to store electrical energy at very high densities is exceptional. This attribute, added to its ability to rapidly charge and discharge, makes it suitable for energy storage applications.
- Benefits of 2D Materials
- 2D materials beyond Graphene
- 2D Topological Materials
- Chemical functionalization of Graphene
Related Conference of Graphene and 2D Materials
31st International Conference on Advanced Materials, Nanotechnology and Engineering
11th International Conference and Expo on Ceramics and Composite Materials
23rd International Conference and Exhibition on Materials Science and Chemistry
Graphene and 2D Materials Conference Speakers
Recommended Sessions
- Advanced Energy Materials
- Advanced Nanomaterials - production, Synthesis and Processing
- Applied Materials Chemistry
- Biomaterials and Medical Devices
- Ceramics and Composite Materials
- Electronic, Optical and Magnetic Materials
- Emerging Smart Materials
- Future prospects of Nanotechnologies and Commercial Viability
- Graphene and 2D Materials
- Green Polymers & Green Materials
- Materials for Energy Applications
- Materials Science and Engineering
- Materials Science and Materials Chemistry
- Mechanics, Characterization Techniques and Equipments
- Metals, Mining, Metallurgy and Materials
- Nanomaterial’s and Nanotechnology
- Physics and Chemistry of Materials
- Polymer Science and Technology
Related Journals
Are you interested in
- Additive Manufacturing of Ceramics and Composites - Ceramics 2025 (UK)
- Advanced Ceramics - Materials Congress-2025 (UAE)
- Advanced Characterization Techniques - Ceramics 2025 (UK)
- Advanced Coatings and Surface Treatments for Biomaterials - Biomaterials 2025 (France)
- Advanced Magnetic Materials - Materials Congress-2025 (UAE)
- Advanced Material Characterization Techniques - Materials Congress-2025 (UAE)
- Advanced Materials and Functional Devices : - ADVANCED MATERIALS 2025 (UK)
- Advanced Materials and Nanotechnology : - ADVANCED MATERIALS 2025 (UK)
- Advanced Materials for Additive Manufacturing - Materials Congress-2025 (UAE)
- Advanced Materials for Automotive Applications - Materials Congress-2025 (UAE)
- Advanced Materials in Electronics - Materials Congress-2025 (UAE)
- Advanced Metals and Alloys - Materials Congress-2025 (UAE)
- Bioactive Materials and Surface Modification - Biomaterials 2025 (France)
- Bioceramics and Biomedical Applications - Ceramics 2025 (UK)
- Biocompatibility and Safety of Biomaterials - Biomaterials 2025 (France)
- Bioinformatics and Computational Modeling in Biomaterials - Biomaterials 2025 (France)
- Biomaterials in Wound Healing and Tissue Repair - Biomaterials 2025 (France)
- Biomaterials for Aesthetic and Reconstructive Surgery - Biomaterials 2025 (France)
- Biomaterials for Antibacterial and Antiviral Applications - Biomaterials 2025 (France)
- Biomaterials for Cardiovascular Applications - Biomaterials 2025 (France)
- Biomaterials for Diagnostic and Imaging Technologies - Biomaterials 2025 (France)
- Biomaterials for Gastrointestinal Applications - Biomaterials 2025 (France)
- Biomaterials for Gene and Cell Therapy - Biomaterials 2025 (France)
- Biomaterials for Neurological Applications - Biomaterials 2025 (France)
- Biomaterials in Cancer Treatment and Oncology - Biomaterials 2025 (France)
- Biomaterials in Orthopedics and Bone Regeneration - Biomaterials 2025 (France)
- Biomedical Nanotechnology : - ADVANCED MATERIALS 2025 (UK)
- Carbon Nanostructures and Graphene : - ADVANCED MATERIALS 2025 (UK)
- Ceramic Armour and Defence Applications - Ceramics 2025 (UK)
- Ceramic Coatings and Thin Films - Ceramics 2025 (UK)
- Ceramic Materials: Properties and Applications - Materials Congress-2025 (UAE)
- Ceramic Matrix Composites (CMCs) - Ceramics 2025 (UK)
- Ceramic Processing Techniques - Ceramics 2025 (UK)
- Ceramic Recycling and Waste Reduction - Ceramics 2025 (UK)
- Challenges in Translational Biomaterials Research - Biomaterials 2025 (France)
- Composite Material Design and Development - Ceramics 2025 (UK)
- Composite Materials : - ADVANCED MATERIALS 2025 (UK)
- Composite Materials: Design and Testing - Materials Congress-2025 (UAE)
- Electrical and Electronic Ceramics - Ceramics 2025 (UK)
- Emerging Trends in Biodegradable Biomaterials - Biomaterials 2025 (France)
- Energy and Environmental Applications - Ceramics 2025 (UK)
- Environmental Sensors Using Ceramics - Ceramics 2025 (UK)
- Functional Ceramics - Ceramics 2025 (UK)
- Fundamentals of Materials Science - Materials Congress-2025 (UAE)
- Glass Ceramics and Applications - Ceramics 2025 (UK)
- High-Performance Structural Materials - Ceramics 2025 (UK)
- High-Temperature Superconductors - Ceramics 2025 (UK)
- Lightweight Composites for Aerospace and Automotive - Ceramics 2025 (UK)
- Materials Degradation and Protection - Materials Congress-2025 (UAE)
- Materials for Energy Applications - Materials Congress-2025 (UAE)
- Materials for Extreme Environments - Materials Congress-2025 (UAE)
- Materials for Medical Devices - Materials Congress-2025 (UAE)
- Metals and Alloys Structure and Performance - Materials Congress-2025 (UAE)
- Miniaturization Technology : - ADVANCED MATERIALS 2025 (UK)
- Molecular biology and Materials science : - ADVANCED MATERIALS 2025 (UK)
- Nano Materials : - ADVANCED MATERIALS 2025 (UK)
- Nano Structures - ADVANCED MATERIALS 2025 (UK)
- Nano Technology and Photonics Communication : - ADVANCED MATERIALS 2025 (UK)
- Nanocluster and Nanoscience : - ADVANCED MATERIALS 2025 (UK)
- Nanocluster and Nanoscience : - ADVANCED MATERIALS 2025 (UK)
- Nanomaterials and Nanotechnology - Materials Congress-2025 (UAE)
- Nanometrology and Instrumentation : - ADVANCED MATERIALS 2025 (UK)
- Nanoparticle and Nanoscale Research : - ADVANCED MATERIALS 2025 (UK)
- Nanoparticle Synthesis and Applications: - ADVANCED MATERIALS 2025 (UK)
- Nanosensors Devices : - ADVANCED MATERIALS 2025 (UK)
- Nanostructured Ceramics - Ceramics 2025 (UK)
- Nanotechnology-Basics to Applications : - ADVANCED MATERIALS 2025 (UK)
- Optical Materials and Plasmonics : - ADVANCED MATERIALS 2025 (UK)
- Polymer Science and Engineering Innovations - Materials Congress-2025 (UAE)
- Polymers and Polymer Composites - Materials Congress-2025 (UAE)
- Properties of Nano Materials : - ADVANCED MATERIALS 2025 (UK)
- Recycling and Sustainability in Ceramics - Ceramics 2025 (UK)
- Science and Technology of Advanced Materials : - ADVANCED MATERIALS 2025 (UK)
- Smart and Responsive Biomaterials - Biomaterials 2025 (France)
- Spintronics: - ADVANCED MATERIALS 2025 (UK)
- Surface Engineering and Coatings - Materials Congress-2025 (UAE)
- Surgical Applications of Biomaterials - Biomaterials 2025 (France)
- Sustainability in Biomaterials Development - Biomaterials 2025 (France)
- Sustainable Materials and Green Technology - Materials Congress-2025 (UAE)
- The Role of Biomaterials in Infection Control - Biomaterials 2025 (France)
- Wearable and Flexible Ceramics - Ceramics 2025 (UK)